Exercises for Stochastic Processes

Tutorial exercises:

- T1. Let M and N be independent Poisson processes with intensities λ and μ . Show that M + N is a Poisson process with intensity $\lambda + \mu$.
- T2. Let $X = (X_1, \ldots, X_n)$, where X_1, \ldots, X_n are i.i.d. standard normal random variables. Let O be an $n \times n$ orthogonal matrix. Show that $OX \stackrel{d}{=} X$.
- T3. Consider an insurance company where claims arrive according to a Poisson process with intensity $\lambda > 0$. Suppose the size of each claim X_i is independent and identically distributed with distribution μ , with existing moment generating function

$$m_X(t) := \int_0^\infty \exp(tx)\mu(\mathrm{d}x).$$

The insurance company has a constant income rate of c > 0, and a starting capital of u > 0. Define the loading factor θ such that $c = (1 + \theta)\lambda \mathbb{E}[X_1]$, and suppose $\theta > 0$. Let X_t be the capital of the insurance company at time t. Show that the probability $\psi(u)$ that the company goes bankrupt, i.e., the probability that $X_t < 0$ for some t > 0, satisfies

$$\psi(u) \le \exp(-Ru),$$

where R is the positive solution to the equation

$$1 + (1+\theta)\mathbb{E}[X_1]R = m_X(R).$$

 \rightarrow Page 2

Homework exercises:

H1. Let N, X_1, X_2, \ldots be independent random variables, N Poisson distributed and X_k uniformly distributed on [0, 1]. Show that

$$N_t := \sum_{k=1}^N \mathbf{1}_{[0,t]}(X_k) \qquad (t \in [0,1])$$

is a Poisson process (restricted to $t \in [0, 1]$) in the sense of the "alternative 1" definition from the lecture. How can it be extended to all $t \ge 0$?

H2. (a) Let $\lambda > 0$. Consider the family of probability measures

 $\{P^{\underline{t}} : \underline{t} = (t_1, t_2, \dots, t_n), 0 \le t_1 \le \dots \le t_n, n \in \mathbb{N}\},\$

where $P^{\underline{t}}$ is defined on $(\mathbb{N}_0^n, \mathcal{P}(\mathbb{N}_0^n))$, with the property that for all $n \in \mathbb{N}$ and for all \underline{t} , the random variables X_{t_1} ,

 $X_{t_2} - X_{t_3}, \ldots, X_{t_n} - X_{t_{n-1}}$ are independent under $P^{\underline{t}}$ and have distribution

$$X_{t_1} \sim \text{POI}(\lambda t_1), \quad X_{t_i} - X_{t_{i-1}} \sim \text{POI}(\lambda(t_i - t_{i-1})), \quad i = 2, \dots, n.$$

Show that the family $\{P^{\underline{t}}\}$ is compatible.

(b) Let $\sigma^2 > 0$. Consider the family of probability measures

 $\{P^{\underline{t}} : \underline{t} = (t_1, t_2, \dots, t_n), 0 \le t_1 \le \dots \le t_n, n \in \mathbb{N}\},\$

where $P^{\underline{t}}$ is defined on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, with the property that for all $n \in \mathbb{N}$ and for all \underline{t} , the random variables X_{t_1} ,

 $X_{t_2} - X_{t_3}, \ldots, X_{t_n} - X_{t_{n-1}}$ are independent under $P^{\underline{t}}$ and have distribution

 $X_{t_1} \sim \mathcal{N}(\sigma^2 t_1), \quad X_{t_i} - X_{t_{i-1}} \sim \mathcal{N}(\sigma^2 (t_i - t_{i-1})), \quad i = 2, \dots, n.$

Show that the family $\{P^{\underline{t}}\}$ is compatible.

H3. Suppose that $f : \mathbb{R}^2 \to \mathbb{R}$ is a bounded measurable function and X and Y are random variables such that X is \mathcal{G} -measurable and Y is independent of \mathcal{G} . Show that

$$\mathbb{E}(f(X,Y) \mid \mathcal{G}) = g(X)$$

with

$$g(x) = \mathbb{E}(f(x, Y)).$$

Deadline: Monday, 28.10.19